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Monte Carlo simulations of the short-time dynamic behavior are reported for three-dimensional weakly
site-diluted Ising model with spin concentrations p=0.95 and 0.8 at criticality. In contrast to studies of the
critical behavior of the pure systems by the short-time dynamics method, our investigations of site-diluted Ising
model have revealed three stages of the dynamic evolution characterizing a crossover phenomenon from the
critical behavior typical for the pure systems to behavior determined by the influence of disorder. The static and
dynamic critical exponents are determined with the use of the corrections to scaling for systems starting
separately from ordered and disordered initial states. The obtained values of the exponents demonstrate a
universal behavior of weakly site-diluted Ising model in the critical region. The values of the exponents are
compared to results of numerical simulations which have been obtained in various works and, also, with results
of the renormalization-group description of this model.
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I. INTRODUCTION

The investigation of critical behavior of disordered sys-
tems remains one of the main problems in condensed-matter
physics and excites a great interest because all real solids
contain structural defects �1,2�. The structural disorder
breaks the translational symmetry of the crystal and thus
greatly complicates the theoretical description of the mate-
rial. The influence of disorder is particularly important near
the critical point where behavior of a system is characterized
by anomalous large response on any even weak perturbation.
The description of such systems requires the development of
special analytical and numerical methods.

The effects produced by weak quenched disorder on criti-
cal phenomena have been studied for many years �3–8�. Ac-
cording to the Harris criterion �3�, the disorder affects the
critical behavior only if �, the specific-heat exponent of the
pure system, is positive. In this case, a new universal critical
behavior, with new critical exponents, is established. In con-
trast, when ��0, the disorder appears to be irrelevant for the
critical behavior. Only systems whose effective Hamiltonian
near the critical point is isomorphic to the Ising model satisfy
this criterion.

A large number of publications is devoted to the study of
the critical behavior of diluted Ising-like magnets by the
renormalization-group �RG� methods, the numerical Monte
Carlo methods, and experimentally �for a review, see Refs.
�2,9–11��. The ideas about replica symmetry breaking in the
systems with quenched disorder were presented in Refs.
�12,13�. A refined RG analysis of the problem has shown the
stability of the critical behavior of weakly disordered three-
dimensional systems with respect to the replica symmetry-
breaking effects �14�. All obtained results confirm the exis-
tence of a new universal class of the critical behavior, which
is formed by diluted Ising-like systems. However, it remains
unclear whether the asymptotic values of critical exponents

are independent of the rate of dilution of the system, how the
crossover effects change these values, and whether two or
more regimes of the critical behavior exist for weakly and
strongly disordered systems. These questions are the subjects
of heated discussions �2,15�.

For critical dynamic systems, traditionally it is believed
that universal scaling behavior is realized in the long-time
regime of dynamic evolution. However, at first in the paper
�16�, it was shown that systems, starting from macroscopic
nonequilibrium initial states, demonstrate a universal scaling
behavior on the macroscopic short-time stages of their dy-
namic process which is characterized by initial slip expo-
nents � and �� for the response functions G�r , t , t�� and the
order parameter m�t� �magnetization for ferromagnetic sys-
tems�

G�r,t,t�� � �t/t���, m�t� � t��. �1�

A remarkable property of this relaxation process is the in-
crease of magnetization m�t� from a nonzero initial magne-

tization m0�1 at short times t� tcr�m0
−1/���+�/z��. The initial

rise of magnetization is changed to the well-known decay
m�t�� t−�/z� for t� tcr �16�. The critical exponents � and ��
depend on the dynamic universality class �17� and have been
calculated by the RG method for a number of dynamic mod-
els �18� such as the model with a nonconserved order param-
eter �16,19� �model A�, the model with an order parameter
coupled to a conserved density �20� �model C�, and the mod-
els with reversible mode coupling �21� �models E, F, G, and
J�. The universal scaling behavior of the initial stage of the
critical relaxation for pure systems has been verified by ex-
tensive numerical simulations �22–25�. The developed
method in these papers of short-time critical dynamics gives
the possibility to determine both the static critical exponents
�, �, and dynamic critical exponents z and �� in the macro-
scopic short-time regime of the critical relaxation. However,
a number of publications devoted to the numerical study of
disorder influence on nonequilibrium critical relaxation by
the short-time dynamic method is surprisingly little. We*prudnikv@univer.omsk.su
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know the papers �26–28� in which the nonequilibrium criti-
cal dynamics of the three-dimensional �3D� site-diluted Ising
ferromagnets with quenched pointlike defects is investigated
and the values of the initial slip exponent �� �27� and an
exponent Ca for autocorrelation function �28� are determined
for systems with different spin concentrations. The obtained
universal value ��=0.10�2� is in good agreement, as it is
insisted in �27�, with the RG estimate for ��=0.0868 calcu-
lated in the two-loop approximation in Ref. �29� with the use
of 	-expansion method, where 	=4−d, with d is the spatial
dimension. However, some assumptions introduced during
investigations in Ref. �27� and discussed below precludes
from consenting to this value ��=0.10�2� as confirmation of
the RG estimate validity. In our paper �31�, the integrated
Monte Carlo simulations of the short-time dynamic behavior
are reported for 3D Ising and XY models with long-range
correlated disorder at criticality, in the case corresponding to
linear defects. Both static and dynamic critical exponents are
determined for systems starting separately from ordered and
disordered initial states. The obtained values of the expo-
nents are in good agreement with results of the field-theoretic
description of the critical behavior of these models in the
two-loop approximation �30�.

In the present paper, we numerically investigate the short-
time critical dynamics with a nonconserved order parameter
�model A� �17� in the 3D site-diluted Ising systems with spin
concentrations p=0.95 and 0.8. In the following section, we
introduce the 3D Ising model with quenched pointlike de-
fects and scaling relations for the short-time critical dynam-
ics. In Sec. III, we derive the critical short-time dynamics in
Ising systems starting separately from ordered and disor-
dered initial states. Critical exponents obtained under these
two conditions with the use of the corrections to scaling are
compared. The final section contains analysis of the main
results, their comparison to results of other investigations,
and our conclusions.

II. DESCRIPTION OF THE MODEL AND METHODS

We have considered the following 3D site-diluted ferro-
magnetic Ising model Hamiltonian defined in a cubic lattice
of linear size L with periodic boundary conditions

H = − J�
�i,j�

pipjSiSj , �2�

where the sum is extended to the nearest neighbors, J
0 is
the short-range exchange interaction between spins Si fixed
at the lattice sites, and assuming values of �1. Nonmagnetic
impurity atoms form empty sites. In this case, occupation
numbers pi assume the value 0 or 1 and are described by the
distribution function

P�pi� = �1 − p���pi� + p��1 − pi� , �3�

with p=1−c, where c is the concentration of the impurity
atoms.

In this paper, we have investigated systems with the spin
concentrations p=0.95 and 0.8. We have considered the cu-
bic lattices with linear size L=128. The Metropolis algorithm
has been used in simulations. We consider only the dynamic

evolution of systems described by the model A in the classi-
fication of Hohenberg and Halperin �17�. The Metropolis
Monte Carlo scheme of simulation with the dynamics of a
single-spin flips reflects the dynamics of model A and en-
ables us to compare obtained critical exponents �� and z to
the results of RG description of the nonequilibrium relax-
ation of this model.

According to the argument of Janssen et al. �16� obtained
with the RG method and 	 expansion, one may expect a
generalized scaling relation for the kth moment the magneti-
zation,

m�k��t,,L,m0� = b−k�/�m�k��b−zt,b1/�,b−1L,bx0m0� , �4�

is realized after a time scale tmic which is large enough in a
microscopic sense but still very small in a macroscopic
sense. In Eq. �4�, b is a spatial rescaling factor, � and � are
the well-known static critical exponents, and z is the dy-
namic exponent, while the new independent exponent x0 is
the scaling dimension of the initial magnetization m0 and 
= �T−Tc� /Tc is the reduced temperature.

Since the system is in the early stage of the evolution, the
correlation length is still small and finite-size problems are
nearly absent. Therefore, we generally consider L large
enough �L=128� and skip this argument. We now choose the
scaling factor b= t1/z so that the main t dependence on the
right is cancelled. Applying the scaling form �4� for k=1 to
the small quantity tx0/zm0, one obtains

m�t,,m0� � m0t��F�t1/�z,tx0/zm0�

= m0t���1 + at1/�z� + O�2,m0
2� , �5�

where ��= �x0−� /�� /z has been introduced. It was shown in
Ref. �16� that the critical exponents � and �� in Eq. �1� are
related by the scaling relation ��=�+ �2−z−�� /z, therefore
independent exponent is one of them �� or ���. For =0 and
small enough t and m0, the scaling dependence for magneti-
zation �5� takes the form m�t�� t��. The time scale of a criti-
cal initial increase of the magnetization is tcr�m0

−z/x0. How-
ever, in the limit of m0→0, the time scale goes to infinity.
Hence, the initial condition can leave its trace even in the
long-time regime. For illustration, we give in Fig. 1 the time

FIG. 1. Time evolution of the magnetization m�t� from the ini-
tial state with magnetization m0=0.03 at Tc=3.499 48 as a result of
Monte Carlo simulation of samples with spin concentration p=0.8
and with linear size L=128.
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evolution of the magnetization m�t� from the initial state with
magnetization m0=0.03 at Tc=3.499 48 as a result of Monte
Carlo simulation of samples with spin concentration p=0.8
and with linear size L=128.

If �0, the power-law behavior is modified by the scal-
ing function F�t1/z�� with corrections to the simple power
law, which will be dependent on the sign of . Therefore,
simulation of the system for temperatures near the critical
point allows to obtain the time-dependent magnetization with
nonperfect power behavior and the critical temperature Tc
can be determined by interpolation.

For the site-diluted Ising model, we measured the time
evolution of the magnetization determined as follows:

m�t� = 	
 1

Ns
�

i

Ns

piSi�t��� , �6�

where angle brackets denote the statistical averaging, the
square brackets are for averaging over the different impurity
configurations, and Ns= pL3 is a number of spins in the lat-
tice. Two other interesting observables in short-time dynam-
ics are the second moment of magnetization m�2��t�,

m�2��t� = 	
 1

Ns
�

i

Ns

piSi�t��2�� �7�

and the autocorrelation function

A�t� = 	
 1

Ns
�

i

Ns

piSi�t�Si�0��� . �8�

As the spatial correlation length in the beginning of the time
evolution is small, for a finite system of dimension d with
lattice size L the second moment m�2��t ,L��Ld. Combining
this with the result of the scaling form in Eq. �4� for =0 and
b= t1/z, one obtains

m�2��t� � t−2�/�zm�2��1,t−1/zL� � tc2,

c2 = d − 2
�

�
�1

z
. �9�

Furthermore, careful scaling analysis shows that the autocor-
relation also decays with a power law �32�

A�t� � t−ca, ca =
d

z
− ��. �10�

Thus, the investigation of the short-time evolution of system
from a high-temperature initial state with m0=0 allows to
determine the dynamic exponent z, the ratio of static expo-
nents � /�, and the initial slip exponent ��.

Until now, a completely disordered initial state has been
considered as starting point, i.e., a state of very high tem-
perature. The question arises how a completely ordered ini-
tial state evolves when heated up suddenly to the critical
temperature. In the scaling form �4�, one can skip besides L,
also the argument m0=1,

m�k��t,� = b−k�/�m�k��b−zt,b1/�� . �11�

The system is simulated numerically by starting with a com-
pletely ordered state, whose evaluation is measured at or near
the critical temperature. The quantities measured are m�t�
and m�2��t�. With b= t1/z, one avoids the main t dependence in
m�k��t� and for k=1 one has

m�t,� = t−�/�zm�1,t1/�z� = t−�/�z�1 + at1/�z + O�2�� .

�12�

For =0, the magnetization decays by a power law m�t�
� t−�/�z. If �0, the power-law behavior is modified by the
scaling function m�1, t1/�z�. From this fact, the critical tem-
perature Tc and the critical exponent � /�z can be deter-
mined.

The scaling form of magnetization in Eq. �12� is presented
as follows:

ln m�t,� = �− �/�z�ln t + ln m�1,t1/�z� , �13�

after differentiation with respect to  gives the power law of
time dependence for the logarithmic derivative of the mag-
netization in the following form:

� ln m�t,��=0 � t1/�z, �14�

which allows to determine the ratio 1 /�z. On the basis of the
magnetization and its second moment, the cumulant

U2�t� =
m�2�

�m�2 − 1 � td/z �15�

is defined. From its slope, one can directly measure the dy-
namic exponent z. Consequently, from an investigation of the
system relaxation from ordered initial state with m0=1, the
dynamic exponent z and the static exponents � and � can be
determined and their values can be compared to results of
simulation of system behavior from disordered initial state
with m0=0.

III. MEASUREMENTS OF THE CRITICAL EXPONENTS
FOR 3D SITE-DILUTED ISING MODEL

We have performed simulations on three-dimensional cu-
bic lattices with linear size L=128, starting either from an
ordered state or from a high-temperature state with zero or
small initial magnetization. We would like to mention that
measurements starting from a completely ordered state with
the spins oriented in the same direction �m0=1� are more
favorable, since they are much less affected by fluctuations,
because the quantities measured are rather big in contrast to
those from a random start with m0=0. Therefore, for careful
determination of the critical exponents for 3D Ising model
with spin concentrations p=0.95 and 0.8, we begin to inves-
tigate the relaxation of this model from a completely ordered
initial state.

A. Evolution from an ordered state with m0=1

Initial configurations for systems with the spin concentra-
tions p=0.95;0.8 and with randomly distributed quenched
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pointlike defects were generated numerically. Starting from
those initial configurations, the system was updated with Me-
tropolis algorithm at the critical temperatures Tc
=4.262 67�4� for p=0.95 and Tc=3.499 48�18� for p=0.8,
which have been determined in our paper �33� using Monte
Carlo simulation of the 3D site-diluted Ising model with dif-
ferent spin concentrations and particularly with p=0.95 and
0.8 in equilibrium state. At present investigation, simulations
have been performed up to t=1000 Monte Carlo steps per
spin �MCS/s�. We measured the time evolution of the mag-
netization m�t� and the second moment m�2��t�, which also
allow to calculate the time-dependent cumulant U2�t� in Eq.
�15�.

In Fig. 2, the magnetization m�t� is plotted on a log-log
scale for samples with spin concentrations p=0.95 �Fig. 2�a��
and p=0.8 �Fig. 2�b�� at T=Tc�p� �curves 1� and at T
=Tc�p���T with �T=0.005 �curves 2 and 3�. In Fig. 3, the
logarithmic derivative of the magnetization � ln m�t ,� �=0
with respect to  and in Fig. 4 the cumulant U2�t� are plotted
on a log-log scale at T=Tc�p� for samples with spin concen-
trations p=0.95 �a� and p=0.8 �b�, accordingly. The
� ln m�t ,� �=0 have been obtained from a quadratic interpo-
lation between the three curves of time evolution of the mag-
netization in Fig. 2 for the temperatures T=Tc�p�, T
=Tc�p���T, and taken at the critical temperature Tc
=4.262 67�4� for samples with p=0.95 and Tc
=3.499 48�18� for p=0.8. The resulting curves in Figs. 2–4

have been obtained by averaging over 6000 and 20 000
samples with different configurations of defects for systems
with spin concentrations p=0.95 and p=0.8, accordingly.

We have analyzed the time dependence of the cumulant
U2�t� for samples with spin concentrations p=0.8 and clari-
fied that in the time interval t� �10,50� MCS /s, the U2�t� is
best fitted by power law with the dynamic exponent z
=2.068�24�, corresponding to the pure Ising model �24,34�
and the influence of defects is developed for t

400 MCS /s only. An analysis of the U2�t� slope measured
in the interval t� �500,950� MCS /s shows that the expo-
nent d /z=1.268�15� which gives z=2.366�28�. We have
taken into account these dynamic crossover effects for the
analysis of the time dependence of magnetization and its
derivative. So, the slope of magnetization measured in the
interval t� �400,950� MCS /s and its derivative over the in-
terval t� �500,950� MCS /s provides the exponents � /�z
=0.213�2� and 1 /�z=0.600�8� which give �=0.704�18� and
�=0.365�8�. The same analysis of the observable variables
for samples with spin concentrations p=0.95 leads to the
value of exponent d /z=1.475�12�, with z=2.034�16�, in the
time interval t� �10,200� MCS /s and to the exponents
d /z=1.369�13�, � /�z=0.213�2�, and 1 /�z=0.600�8� in the
time interval t� �550,950� MCS /s, which give z
=2.191�21�, �=0.704�18�, and �=0.365�8�.

For demonstration of crossover effects between the pure
and the dilute regimes, we inserted in Figs. 2�a� and 2�b�

(b)(a)

FIG. 3. Time evolution of the logarithmic derivative of the magnetization � ln m�t ,� �=0 with respect to  is plotted on a log-log scale
for samples with spin concentrations �a� p=0.95 and �b� p=0.8.

(b)(a)

FIG. 2. Time evolution of the magnetization m�t� is plotted on a log-log scale for samples with spin concentrations �a� p=0.95 and �b�
p=0.8 at T=Tc�p� �curves 1� and at T=Tc�p���T, with �T=0.005 �curves 2 and 3�. In insets, curves 4 correspond to pure Ising model.
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results of the magnetization measurements for pure Ising
model at the critical temperature Tc=4.511 42 �35�. Com-
parison of obtained curves in the insets confirms our conclu-
sion that the influence of disorder on the nonequilibrium
critical relaxation is developed for t
550 MCS /s for
samples with p=0.95 and for t
400 MCS /s for samples
with p=0.8.

In the next stage, we have considered the corrections to
the scaling in order to obtain accurate values of the critical
exponents. We have applied the following expression for the
observable X�t�:

X�t� = Axt
��1 + Bxt

−�/z� , �16�

where � is a well-known exponent of corrections to scaling,
Ax and Bx are fitting parameters, and an exponent �=−� /�z
when X�m�t�, �=d /z when X�U2�t�, and �=1 /�z when
X�� ln m�t ,� �=0. This expression reflects the scaling
transformation in the critical range of time-dependent correc-
tions to scaling in the form of t−�/z to the usual form of
corrections to scaling �� in equilibrium state for time t com-
parable to the order parameter relaxation time tr��z��k��
�17�. Field-theoretic estimate of the � value gives �
�0.25�10� in the six-loop approximation �36�. Monte Carlo
studies show that ��0.370�63� from Ref. �37� and �
�0.26�13� from Ref. �33�.

We have used the least-squares method for the best ap-
proximation of the simulation data X�t� by the expression in
Eq. �16�. Minimum of the mean-square errors � of this fitting
procedure determines the exponents � and � /z. As example,

for samples with spin concentrations p=0.8, we plot in Fig. 5
the � for the magnetization �a� as a function of the exponent
� /�z for � /z=0.275, logarithmic derivative of the magneti-
zation �b� as a function of the exponent 1 /�z for � /z
=0.142, and the cumulant �c� as a function of the exponent
d /z for � /z=0.132. In Table I, we present the computed
values of the exponents � /�z, d /z, 1 /�z, and � /z, corre-
sponding minimal values of the mean-square errors � in
these fits. The statistical errors for exponents are estimated
by dividing all data into five data sets. On the base of these
values of exponents and average value of � /z, we determine
the final values of the critical exponents z=2.185�25�, � /�
=0.533�13�, �=0.668�14�, �=0.356�6�, and �=0.369�96�
for p=0.95, and z=2.208�32�, � /�=0.508�17�, �
=0.685�21�, �=0.348�11�, and �=0.404�110� for p=0.8.

The comparison of the obtained values of critical expo-
nents shows their belonging to the same class of universal
critical behavior of the diluted Ising model which can be
characterized by the averaged critical exponents z
=2.196�17�, �=0.677�11�, �=0.352�5�, and �=0.387�60�.

B. Evolution from a disordered state with m0™1

In this part of the paper, we present the numerical inves-
tigations of the short-time critical dynamics of the 3D site-
diluted Ising model on the lattice with linear size L=128,
starting from a disordered state with small initial magnetiza-
tions m0=0.01, 0.02, and 0.03 for samples with spin concen-
tration p=0.8 only. For independent determination of the dy-

(b)(a)

FIG. 4. Time evolution of the cumulant U2�t� is plotted on a log-log scale at T=Tc�p� for samples with spin concentrations �a� p
=0.95 and �b� p=0.8.

(b)(a) (c)

FIG. 5. Dependence of the mean-square errors � of the �a� fits for the magnetization, �b� logarithmic derivative of the magnetization, and
�c� cumulant as a function of the exponents � /�z, 1 /�z, and d /z for p=0.8.
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namic critical exponent z and the ratio of static exponents
� /�, we investigate also a time dependence of the second
moment of magnetization m�2��t� and the autocorrelation
function A�t� for system, starting from a high-temperature
initial state with m0=0 �in fact, with m0=10−4�. In accor-
dance with Sec. II, a generalized dynamic scaling predicts in
this case a power-law evolution for the magnetization m�t�,
the second moment m�2��t�, and the autocorrelation function
A�t� in the short-dynamic regime.

Initial configurations for systems with the initial magneti-
zation m0 were generated numerically. The initial magnetiza-
tion has been prepared by flipping in an ordered state a defi-
nite number of spins at randomly chosen sites in order to get
the desired small value of m0. Starting from those initial
configurations, the system was updated with Metropolis al-
gorithm at the critical temperature Tc=3.499 48�18�, which
has been determined in our paper �33� using Monte Carlo
simulation of the 3D site-diluted Ising model with p=0.8 in
equilibrium state.

We measured the time evolution of the magnetization m�t�
with values of the initial magnetization m0=0.01, 0.02, and
0.03, the second moment m�2��t�, and the autocorrelation
function A�t� with m0=0.0001 up to t=1000 MCS /s. We
show the obtained curves for m�t� in Fig. 6, for m�2��t� in Fig.
7�a�, and for A�t� in Fig. 7�b�, which are plotted on a log-log
scale. These curves were obtained by averaging over 4000
different samples with 25 runs for each sample. We can see
an initial increase of the magnetization, which is a very

prominent phenomenon in the short-time critical dynamics.
But in contrast to dynamics of the pure systems �24�, we can
observe the crossover from dynamics of the pure system on
early times of the magnetization evolution from t�15 up to
t�60 MCS /s to dynamics of the disordered system with the
influence of pointlike defects in the time interval t
� �300,800� MCS /s. The same crossover phenomena were
observed in evolution of the second moment of magnetiza-
tion m�2��t� and the autocorrelation function A�t�. In the re-
sult of linear approximation of these curves in both the time
intervals, we obtained the values of the exponent ���m0� for
initial states with m0=0.01, 0.02, and 0.03 and the exponents
c2 and ca in accordance with relations in Eqs. �5�, �9�, and
�10� �Table II�. The final value of �� is determined by ex-
trapolation to m0=0. Note that the similar crossover phenom-
ena in the nonequilibrium critical relaxation of systems with
quenched disorder have been revealed earlier in Ref. �31� by
means of numerical simulations of the critical behavior of
the 3D Ising and XY models with linear defects.

In the next stage, we have applied the procedure of cor-
rections to the scaling determining by the expression �16� for
analysis of the observable m�t�, m�2��t�, and A�t�. We have
used the least-squares method for the best approximation of
the simulation data by the expression �16�. Minimum of the
mean-square errors � of this fitting procedure determines the

TABLE I. Values of the exponents � /�z, d /z, 1 /�z, and � /z,
corresponding minimal values of the mean-square errors for spin
concentrations p=0.95 and p=0.80.

p Exponent Mean value
Approximation

errors
Statistical

errors � /z

0.95 � /�z 0.244 0.00011 0.00131 0.234

d /z 1.373 0.00938 0.00642 0.092

1 /�z 0.685 0.00117 0.00583 0.181

0.80 � /�z 0.230 0.00081 0.00393 0.275

d /z 1.359 0.01209 0.00785 0.132

1 /�z 0.661 0.00418 0.00700 0.142

FIG. 6. Time evolution of the magnetization m�t� for different
values of the initial magnetization m0=0.01 �1�; 0.02 �2�; 0.03 �3�,
plotted on a log-log scale for samples with spin concentration p
=0.8.

(b)(a)

FIG. 7. �a� Time evolution of the second moment m�2� and �b� the correlation function A�t� for L=128 with the initial magnetization
m0=0.0001.
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exponents ���m0�, c2, and ca with their respective � /z. In
Table III, we present the computed values of these exponents
and the final value of ��=0.127�16� obtained by extrapola-
tion of ���m0� for different values of the initial magnetization
m0 to m0=0. In Table III, we also give the values of critical
exponents z, � /�, and the average value of �, and compare
the values of these exponents to values of corresponding ex-
ponents for the pure Ising model �24�. The obtained values
agree quite well with results of simulation from an ordered
state with m0=1.

Comparison of the value ��=0.127�16� to ��=0.10�2�
from Ref. �27� also measured by simulation of the 3D site-
diluted Ising model shows their not bad agreement within the
limits of statistical errors of simulation and numerical ap-
proximations. In Ref. �27� the nonequilibrium relaxation of
the magnetization m�t� has been investigated from the initial
random spin configurations with mean magnetization m0
=0.01 only for samples with different spin concentrations p
=0.499, 0.6, 0.65, and 0.8 and with linear sizes L=8, 16, 32,
and 64. However, in accordance with Ref. �24�, the initial

slip exponent �� must be determined in the asymptotical
limit with m0→0 on the basis of results of m�t� computing
for a few small values of the initial magnetization m0. Fur-
thermore, as it follows from Eq. �5�, the magnetization un-
dergoes a power-law initial increase characterized by �� for
sufficiently small tx0/zm0. For m0 and t not too small, the
power-law behavior will be modified. For strongly diluted
systems which are also considered in Ref. �27�, the influence
of disorder is observed for longer times than for weakly di-
luted systems. Therefore, the use of the same value of the
initial magnetization for determination of the initial slip ex-
ponent �� for both weakly and strongly diluted systems is
unjustified. It should be noted that in Ref. �27�, the data
analysis of m�t� for samples with different spin concentra-
tions p was carried out with the use of the corrections to
scaling procedure during realization of which the universal
value of the dynamic critical exponent z=2.62�7� obtained in
Ref. �38� was applied. But this value z is inconsistent with
values calculated both in the present paper and in Ref. �39�
in the three-loop approximation of the field-theoretic RG de-
scription and with experimentally measured value z
=2.18�10� for weakly diluted Ising magnet Fe0.9Zn0.1F2 from
Ref. �40�.

Obtained in present paper is the asymptotic value ���m0
→0�=0.127�16� that demonstrates that it is larger than
���m0=0.01� from Ref. �27�. It is explained by the revealed
tendency that ���m0

�2��
���m0
�1�� for the initial magnetization

which are in the following correspondence with each other as
m0

�2��m0
�1�. Therefore, the distinguished good agreement in

Ref. �27� of the obtained value ��=0.10�2� with ��
�0.0867 from Ref. �29� is unjustified. The results of inves-
tigations carried out in this paper give reasons to consider
that the value of the initial slip exponent ��=0.127�16� is
more realistic for description of nonequilibrium critical re-
laxation of the 3D weakly diluted Ising-like systems which is
larger than the value of exponent ��=0.108�2� for the pure
3D Ising systems �19,24� rather than smaller as predicted by
results from Refs. �27,29�.

We have realized a field-theoretic renormalization-group
description of nonequilibrium critical relaxation for directly
three-dimensional diluted Ising model and calculated the ini-
tial slip exponent �� in two-loop approximation without us-
ing the 	-expansion method. As a result, we have obtained

�� =
1

6
g� + 0.125v� − 0.123 968�g��2 + 0.146 806 08g�v�

− 0.0156 245�v��2, �17�

where g� and v� are values of the vertexes describing inter-
action of the order parameter fluctuations in the fixed point
of the renormalization-group equations �41,42�. For further
calculations, we use the FP with g�=2.2514�42�, v�=
−0.7049�13� which determines the critical behavior of the
3D dilute Ising model. The coordinate of this FP has been
obtained in our paper �39� as average of numerical values g�,
v� which were calculated with the use of different methods
of resummation technique. It is well known that the series
expansions for the critical exponents exhibit factorial diver-
gence, but they can be considered in an asymptotic context.

TABLE II. The initial slip exponent �� measured by simulation
of the 3D site-diluted Ising model with p=0.80 for different values
of the initial magnetization m0 and exponents c2 and ca for m0=0.
The value ���m0=0� is the result of an extrapolation.

m0 �� c2 ca z � /�

t� �15,60� t� �5,30�
0.03 0.1016�9�
0.02 0.1031�10�
0.01 0.1043�12�
0 0.1057�17� 0.936�4� 1.347�8� 2.065�14� 0.534�6�

t� �300,800� t� �150,800�
0.03 0.083�3�
0.02 0.099�5�
0.01 0.105�9�
0 0.122�11� 0.859�5� 1.135�10� 2.387�20� 0.475�14�

TABLE III. Values of the exponents for the 3D site-diluted Ising
model with p=0.80 obtained with the use of corrections to the
scaling.

Exponent Value � /z

���m0=0.03� 0.104�12� 0.074

���m0=0.02� 0.117�10� 0.068

���m0=0.01� 0.118�10� 0.096

���m0→0� 0.127�16� 0.079

c2�m0=0� 0.909�4� 0.112

ca�m0=0� 1.242�10� 0.160

z 2.191�21�
� /� 0.504�14�
�� /z�av 0.117�24�
���av 0.256�55�
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In order to obtain physically reasonable values of the critical
exponents for 3D systems, special methods for the summa-
tion of asymptotic series have been developed �39,43–47�,
the most effective being the Padé-Borel, Padé-Borel-Leroy
�PBL�, and conformal mapping techniques. We employ the
PBL resummation method extended to the two-parameter
case. The PBL method is a generalization of the Padé-Borel
method with the integral Borel transformation

f�g� = �
n=0

�

cngn = �
0

�

dte−tB�gtb� ,

B�g� = �
n=0

�

Bngn, Bn =
cn

��bn + 1�
, �18�

where the value of parameter b=2.221426 was chosen in
Ref. �39� from convergence analysis of the test series for
exactly solvable problem of calculating the anharmonic os-

cillator energy with the asymptotic convergence of the series,
which is similar to the series for the RG � and � functions in
the theory of critical phenomena. As a result, the following
value ��=0.1203 has been calculated which very well agrees
with our results of simulation.

IV. ANALYSIS OF RESULTS AND CONCLUSIONS

In a summary Table IV, we present the values of critical
exponents z, ��, � /�, �, �, and � obtained in this paper by
comprehensive Monte Carlo simulations of the short-time
critical evolution of the 3D site-diluted Ising model both
from an ordered initial state with m0=1 for samples with
spin concentrations p=0.95 and 0.8 and from a disordered
initial states with m0�1 for samples with spin concentration
p=0.8. For comparison, we give in Table IV the results of
calculation of these exponents by the field-theoretical
method with fixed-dimension d=3 expansion �36,39�, the re-

TABLE IV. Values of the obtained critical exponents and comparison to other results of Monte Carlo simulations �MC�, field-theoretical
method with fixed-dimension d=3 expansion �FTM�, and experimental �EXP� investigations

z �� � /� � � �

p=0.95, m0=1 2.185�25� 0.533�13� 0.668�14� 0.356�6� 0.369�96�
p=0.80, m0=1 2.208�32� 0.508�17� 0.685�21� 0.348�11� 0.404�110�
p=0.80, m0�1 2.191�21� 0.127�16� 0.504�14� 0.256�55�

Pelissetto and Vicari �Ref. �36�� �FTM� 0.515�15� 0.678�10� 0.349�5� 0.25�10�
Prudnikov et al. �Ref. �39�� �FTM� 2.1792�13�

Rosov et al. FepZn1−pF2, p=0.9 �Ref. �56�� �EXP� 0.350�9�
Rosov et al. FepZn1−pF2, p=0.9, �Ref. �40�� �EXP� 2.18�10�
Slanič et al. FepZn1−pF2, p=0.93, �Ref. �54�� �EXP� 0.70�2�

Prudnikov and Vakilov p=0.95, 2.19�7�
p=0.80, 2.20�8�

p=0.60, 2.58�9�
p=0.40, �Ref. �52�� �MC� 2.65�12�

Heuer, p=0.95 2.16�1� 0.49�2� 0.64�2� 0.31�2�
p=0.90 2.232�4� 0.48�2� 0.65�2� 0.31�2�

p=0.80, 2.38�1� 0.51�2� 0.68�2� 0.35�2�
p=0.60 �Refs. �50,51�� �MC� 2.93�3� 0.45�2� 0.72�2� 0.33�2�

Wiseman and Domany, p=0.80, 0.505�2� 0.682�2�
p=0.60 �Ref. �48�� �MC� 0.437�21� 0.717�6�

Ballesteros et al., p=0.90−0.40 �Ref. �37�� �MC� 0.519�8� 0.684�5� 0.355�3� 0.370�63�
Parisi et al., p=0.90−0.40 �Ref. �38�� �MC� 2.62�7� 0.50�13�
Calabrese et al., p=0.80 �Ref. �49�� �MC� 0.518�5� 0.683�3� 0.354�2�
Murtazaev et al., p=0.95, 0.646�2� 0.306�3�

p=0.9, 0.664�3� 0.308�3�
p=0.8, 0.683�4� 0.310�3�
p=0.6 �Ref. �53�� �MC� 0.725�6� 0.349�4�

Schehr and Paul �Ref. �27�� �MC� 0.10�2�
Hasenbusch, et al., p=0.8 �Ref. �55�� �MC� 2.35�2�
Prudnikov et al., p=0.95−0.80, 0.532�12� 0.693�5� 0.26�13�

p=0.60−0.50 �Ref. �33�� �MC� 0.524�13� 0.731�11� 0.28�15�
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sults of experimental investigations of the Ising-like magnets
�40,54,56�, and the results of numerical studies
�27,33,37,38,48–53,55�. As shown in Table IV, our values of
exponents are in good agreement within the limits of statis-
tical errors of simulation and numerical approximations with
results of the field-theoretical description of the statics in
six-loop approximation �36� and critical dynamics in three-
loop approximation �39� and with the results of experimental
investigations of the static �54,56� and dynamic �40� critical
behaviors of weakly diluted Ising-like magnets.

Comparison to results of Monte Carlo simulations shows
that our static exponents � /�, �, and � agree well with those
exponents measured in equilibrium for weakly diluted sys-
tems in the most cited papers and for systems with wide
dilution range in Ref. �37� where the critical exponents were
obtained for p�0.8 as dilution-independent after a proper
infinite volume extrapolation with taking into account the
leading corrections-to-scaling terms. However, it was found
that the case with p=0.9 falls out from this dilution-
independent scheme of fits with common exponent �=0.37
for samples with different spin concentrations. Authors draw
a conclusion that the p=0.9 data seem to be still crossing
over from the pure Ising fixed point to the diluted one. Most
of the computations have been carried out at p=0.8 as in this
case the scaling corrections are very small and the results
even in small lattices are stable. So, in Ref. �49�, it was
shown that for case with p=0.8, the observed corrections to
scaling could be the next-to-leading with �2�0.80. How-
ever, our present investigation and the results of computa-
tions in equilibrium �33� show that the systems with p
=0.95 and p=0.8 are characterized by close agreement of the
critical exponent values and they belong to the same class of
universal critical behavior of the site-diluted Ising model
with the averaged critical exponents �=0.677�11�, �
=0.352�5�, and �=0.387�60�.

Now we compare the values of the dynamic critical expo-
nent z obtained in this paper by the short-time dynamics
method to the results of Monte Carlo simulations of the criti-
cal dynamics in equilibrium, realized in Refs. �51,55�, to the
results of nonequilibrium studies of the susceptibility in
Refs. �38,55�, and to the results of Monte Carlo
renormalization-group application to description of the site-
diluted Ising model relaxation from the ordered initial state
with m0=1 in Ref. �52�. Values of z from paper �51� agree
rather well with our results only for weakly diluted systems
with p�0.9, while a noticeable difference between the re-
sults is observed for strongly disordered systems. Starting
from the universality concept for critical behavior of diluted
Ising systems and that the asymptotic value of z is indepen-
dent of the degree of dilution, the author in Ref. �51� ob-
tained the asymptotic value z=2.4�1� using the effective val-
ues of the exponent listed in Table IV. The off-equilibrium
critical dynamics of the 3D Ising model with the spin con-
centration varying in a wide range was analyzed in Ref. �38�.
Also assuming that the critical behavior of diluted Ising sys-
tems is universal under dilution, the authors obtained the
asymptotic value of z=2.62�7� taking into account the lead-
ing corrections to the scaling dependence for the dynamical
susceptibility. In this case, the value of the exponent �
=0.50�13� obtained in Ref. �38� is strongly inconsistent with

�=0.25�10� from the field theory calculations �36� and not
so well agreement with �=0.37�6� from Monte Carlo results
in Ref. �37�. In the approximations realized in Ref. �38�, the
results for weakly diluted systems were characterized by the
largest errors. In Ref. �55�, it was carried out the Metropolis
dynamics in equilibrium for site-diluted Ising model with p
=0.8, 0.85, and 0.65. For case with p=0.8, authors investi-
gated in detail the scaling corrections which were the next-
to-leading with �2=0.82�8� and gave the exponent z
=2.35�2�. Investigations for other values of p did not permit
to determine z in these systems accurately. Also, in Ref. �55�,
investigated was the off-equilibrium relaxational critical dy-
namics in the site-diluted Ising model at p=0.8. The results
show that equilibrium estimate z=2.35�2� is perfectly con-
sistent with the off-equilibrium MC data. Authors did not
observe a large-time scaling corrections proportional to t−�/z;
instead, their data show corrections that are proportional to
t−�2/z with the static correction-to-scaling exponents �
=0.29�2� and �2=0.82�8�. We have some doubts in validity
of z=2.35�2�. As it was shown in �33�, the realization of
correction to scaling procedure demands the six simulation
data points at least for their approximation by four-parameter
function such as in Eq. �16� for lattices with L
Lmin.
Whereas in paper �55�, the asymptotical value z=2.35�2�
was obtained with the use of four or five data points as it was
demonstrated in Figs. 1–4 in �55�. It is necessary to use
additional data points for lattices with L
64.

The early results of our numerical investigations of the
critical dynamics for diluted Ising systems in Ref. �52� by
Monte Carlo renormalization-group method show very good
agreement with our present results for weakly diluted sys-
tems, while a noticeable difference between the results is
observed for strongly diluted systems. We are planning to
continue the Monte Carlo study of critical behavior of the
site-diluted Ising model by short-time dynamics method with
p=0.6 and 0.5 focusing on the problem of dilution indepen-
dence of asymptotic characteristics.

The present results of Monte Carlo investigations allow us
to recognize that the short-time dynamics method is reliable
for the study of the critical behavior of the systems with
quenched disorder and is the alternative to traditional Monte
Carlo methods. But in contrast to studies of the critical be-
havior of the pure systems by the short-time dynamics
method �23,24�, in case of the systems with quenched point-
like disorder after the microscopic time tmic
�5÷10 MCS /s, there exist three stages of dynamic evolu-
tion. For systems starting from the ordered initial states
�m0=1� in the time interval of 10–50 MCS/s, the power-law
dependence is observed at the critical point for Binder cumu-
lant U2�t�, which is similar to that in the pure system. In the
time interval �400, 950�, the power-law dependences are ob-
served in the critical point for the magnetization m�t�, the
logarithmic derivative of the magnetization, and Binder cu-
mulant U2�t� which are determined by the influence of dis-
order. However, careful analysis of the slopes for m�t� and
U2�t� reveals that a correction to scaling should be consid-
ered in order to obtain accurate results. The dynamic and
static critical exponents were computed with the use of the
corrections to scaling, which demonstrate their good agree-
ment with results of the field-theoretic description of the
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critical behavior of these models with disorder. In the inter-
mediate time interval of 100–400 MCS/s, the dynamic cross-
over behavior is observed from the critical behavior typical
for the pure systems to behavior determined by the influence
of disorder.

The investigation of the critical behavior of the Ising
model with defects starting from the disordered initial states
with m0�1 also has revealed three stages of the dynamic
evolution. It was shown that the power-law dependences for
the magnetization m�t�, the second moment m�2��t�, and the
autocorrelation A�t� are observed in the critical point, which
are typical for the pure system in the common time interval
�5, 60� MCS’s and for the disordered system in the common
interval �150, 800� MCS’s. In the intermediate time interval,
the crossover behavior is observed in the dynamic evolution
of the system. The obtained values of exponents demonstrate

good agreement within the limits of statistical errors of simu-
lation and numerical approximations with results of simula-
tion of the pure Ising model by the short-time dynamics
method for the first time interval and with our results of
simulation of the critical relaxation of this model from the
ordered initial state.
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